This Safety Data Sheet (SDS) is for welding consumables and related products and may be used to comply with OSHA's Hazard Communication standard, 29 CFR 1910.1200, Superfund Amendments and Reauthorization Act (SARA) of 1986 Public Law 99-499 and Canadian Workplace Hazardous Materials Information System (WHMIS) per Health Canada administrative policy. The OSHA standard must be consulted for specific requirements. This Safety Data Sheet complies with ISO 11014-1 and ANSI Z400.1.

Section 1: Identification

Manufacturer/Supplier: American Filler Metals Company
TelephoneNumber: (713) 649-8785
Address: 6015 Murphy Street, Houston, TX 77033
EmergencyNo.: Chemtrec: (800) 424-9300
WebSite: www.amfiller.com

Classification:

TradeName: Alumarc (E4043), E1100
AWS A5.3 (Aluminum & Aluminum-Alloy Electrodes for Shielded Metal Arc Welding)
ER1100 (AMS4180), ER4043 (AMS4190), ER4047 (AMS4185),
AWS A5.10 (Bare Aluminum & Aluminum-Alloy Welding Electrodes & Rods)
ER4145 (AMS4184), A356 (AMS4181), ER2319 (AMS4191), C355 (AMS4245),
357.0 (AMS4246) ER5356, ER5183, ER4643, ER5554, ER5556, ER5654

Section 2: Hazard(s) Identification

IMPORTANT - This section covers the hazardous materials from which this product is manufactured.
This data has been classified according to the criteria of the Globally Harmonized System of Classification and Labeling of Chemicals (GHS) as required and defined in OSHA Hazard Communication Standard (29 CFR Part 1910.1200).
The fumes and gases produced during welding with normal use of this product are addressed in Section 8.

Label Elements:

- Hazard Symbol – No symbol required
- Signal Word – No signal word required
- Hazard Statement – No applicable
- Precautionary Statement – Not Applicable

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>CAS</th>
<th>IARC</th>
<th>NTP</th>
<th>OSHA</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>7429-90-5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beryllium</td>
<td>7440-41-7</td>
<td>1</td>
<td>K</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chrome</td>
<td>7440-47-3</td>
<td>111, 3 1</td>
<td>K 3</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Copper</td>
<td>7440-50-8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iron</td>
<td>7439-89-6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Magnesium</td>
<td>7439-95-4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Manganese</td>
<td>7439-96-5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nickel</td>
<td>7440-02-0</td>
<td>1</td>
<td>K</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Silicon</td>
<td>7440-21-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(Amorphous Silica Fume)</td>
<td>69012-64-2</td>
<td>3</td>
<td>K</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

E – International Agency for Research on Cancer (1 – Human Carcinogen, 2A – Probably Carcinogenic to Humans, 2B – Possibly Carcinogenic to Humans, 3 – Unclassifiable as to Carcinogenicity in Humans, 4 Probably Not Carcinogenic to Humans) Z – US National Toxicology Program (K – Known Carcinogen, S – Suspected Carcinogen) H – OSHA Known Carcinogen List Θ – California Proposition 65 (X – On Proposition 65 list) — Dashes indicate the ingredient is not listed with the IARC, NTP, OSHA or 65 Σ – Metal and Chromium III Compounds ΣΣ – Chromium VI Compounds ΣΣΣ – Chromium (VI) Trioxide EU 67/548/EEC Ψ – Silica Crystalline α-Quartz

GHS-US Classification

- STOT SE 3 : H336
- STOT RE 1 : H372
- STOT SE 3 : H335
- STOT SE 3 : H335
- Aquatic Acute 1 : H400

GHS-US Labelling

GHS07
GHS08
GHS09
Section 2: Hazard(s) Identification (Continued)

<table>
<thead>
<tr>
<th>Signal Word (GHS-US):</th>
<th>Danger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard Statements (GHS-US):</td>
<td></td>
</tr>
<tr>
<td>H335 - May cause respiratory irritation</td>
<td></td>
</tr>
<tr>
<td>H336 - May cause drowsiness or dizziness</td>
<td></td>
</tr>
<tr>
<td>H372 - Causes damage to organs through prolonged or repeated exposure</td>
<td></td>
</tr>
<tr>
<td>H400 - Very toxic to aquatic life</td>
<td></td>
</tr>
<tr>
<td>Precautionary statements (GHS-US):</td>
<td></td>
</tr>
<tr>
<td>P260 - Do not breathe dust/fume/gas/mist/vapours/spray</td>
<td></td>
</tr>
<tr>
<td>P261 - Avoid breathing dust/fume/gas/mist/vapours/spray</td>
<td></td>
</tr>
<tr>
<td>P264 - Wash thoroughly after handling</td>
<td></td>
</tr>
<tr>
<td>P270 - Do not eat, drink or smoke when using this product</td>
<td></td>
</tr>
<tr>
<td>P271 - Use only outdoors or in a well-ventilated area</td>
<td></td>
</tr>
<tr>
<td>P273 - Avoid release to the environment</td>
<td></td>
</tr>
<tr>
<td>P304+P340 - IF INHALED: Remove person to fresh air and keep comfortable for breathing</td>
<td></td>
</tr>
<tr>
<td>P312 - Call a POISON CENTER/doctor if you feel unwell</td>
<td></td>
</tr>
<tr>
<td>P314 - Get medical advice and attention if you feel unwell</td>
<td></td>
</tr>
<tr>
<td>P391 - Collect spillage</td>
<td></td>
</tr>
<tr>
<td>P403+P233 - Store in a well-ventilated place. Keep container tightly closed</td>
<td></td>
</tr>
<tr>
<td>P405 - Store locked up</td>
<td></td>
</tr>
<tr>
<td>P501 - Dispose of contents/container in accordance with local/regional/national/international regulations.</td>
<td></td>
</tr>
</tbody>
</table>

Warning! - Avoid breathing welding fumes and gases, they may be dangerous to your health. Always use adequate ventilation. Always use appropriate personal protective equipment.

- Primary Routes of Entry: Respiratory System, Eyes and/or Skin.
- Arc Rays: The welding arc can injure eyes and burn skin.
- Electric Shock: Arc welding and associated processes can kill. See Section 8.
- Fumes and Gases: Can be dangerous to your health.

Welding fumes and gases cannot be classified simply. The composition and quantity of both are dependent upon the metal being welded, the process, procedures and electrodes used. Most fume ingredients are present as complex oxides and compounds and not as pure metals. When the electrode is consumed, the fume and gas decomposition products generated are different in percent and form from the ingredients listed in Section 3. Decomposition products of normal operation include those originating from the volatilization, reaction or oxidation of the materials shown in this section, plus those from the base metal and coating, etc., as noted above. Monitor for the materials identified in the list within this section.

Fumes from the use of this product may contain complex oxides or compounds of the following elements and molecules: amorphous silica fume, beryllium, chromium, manganese and nickel. Other reasonably expected constituents of the fume would also include complex oxides of iron and silicon. Gaseous reaction products may include carbon monoxide and carbon dioxide. Ozone and nitrogen oxides may be formed by the radiation from the arc. Other conditions which also influence the composition and quantity of the fumes and gases to which workers may be exposed include: coatings on the metal being welded (such as paint, plating or galvanizing), the number of welders and the volume of the work area, the quality and amount of ventilation, the position of the welder's head with respect to the fume plume, as well as the presence of contaminants in the atmosphere (such as chlorinated hydrocarbon vapors from cleaning and degreasing activities).

One recommended way to determine the composition and quantity of fumes and gases to which workers may be exposed is to take an air sample inside the welder's helmet if worn or in the worker's breathing zone. See ANSI/AWS F1.1, available from the "American Welding Society", P.O. Box 351040, Miami, FL 33135. Also, from AWS is F1.3 "Evaluating Contaminants in the Welding Environment - A Sampling Strategy Guide", which gives additional advice on sampling.

Section 3: Composition/Information on Ingredients

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>CAS</th>
<th>Weight (%)</th>
<th>Ingredient</th>
<th>CAS</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>7429-90-5</td>
<td>80 – 99.7</td>
<td>Magnesium</td>
<td>7439-95-4</td>
<td>0 – 6</td>
</tr>
<tr>
<td>Beryllium</td>
<td>7440-41-7</td>
<td>< 0.0003</td>
<td>Manganese</td>
<td>7439-96-5</td>
<td>0 – 2</td>
</tr>
<tr>
<td>Chromium</td>
<td>7440-47-3</td>
<td>0 – 0.5</td>
<td>Nickel</td>
<td>7440-02-0</td>
<td>0 – 0.05</td>
</tr>
<tr>
<td>Copper</td>
<td>7440-50-8</td>
<td>0 – 0.5</td>
<td>Silicon</td>
<td>7440-21-3</td>
<td>0 – 14</td>
</tr>
<tr>
<td>Iron</td>
<td>7439-95-4</td>
<td>0 – 1</td>
<td>(Amorphous Silica Fume)</td>
<td>69012-64-2</td>
<td>-</td>
</tr>
</tbody>
</table>

Section 4: First Aid Measures

Inhalation: If breathing is difficult provide fresh air and contact physician. Eye/Skin Injuries: For radiation burns, see physician.

Section 11 of this SDS covers the acute effects of overexposure to the various ingredients within the welding consumable. Section 8 of this SDS lists the exposure limits and covers methods for protecting yourself and your co-workers.

Section 5: Fire and Explosion Hazard Data

Welding consumables applicable to this sheet as shipped are nonreactive, nonflammable, nonexplosive and essentially nonhazardous until welded. Welding arcs and sparks can ignite combustibles and flammable products. Unused welding consumables may remain hot for a period of time after completion of a welding process. See American National Standard (ANSI) Z49.1 for further general safety information on the use and handling of welding consumables and associated procedures.
Welding consumables applicable to this sheet as shipped are nonreactive, nonflammable, nonexplosive and essentially nonhazardous until welded.

Section 9: Physical and Chemical Properties

Read and understand the instructions and the labels on the packaging. Welding fumes do not have a specific OSHA PEL or ACGIH TLV. The OSHA PEL for Particulate – Not Otherwise Classified (PNOC) is 5 mg/m³ – Respirable Fraction, 15 mg/m³ – Total Dust. The ACGIH TLV for Particles – Not Otherwise Specified (PNOS) is 3 mg/m³ – Respirable Particles, 10 mg/m³ – Inhalable Particles. The individual complex compounds within the fume may have a lower OSHA PEL or ACGIH TLV than the OSHA Particulate – Not Otherwise Classified (PNOC). An Industrial Hygienist, the OSHA Permissible Exposure Limits for Air Contaminants (29 CFR 1910.1000), and the ACGIH Threshold Limit Values should be consulted to determine the specific fume constituents present and their respective exposure limits. All exposure limits are in milligrams per cubic meter (mg/m³).

### Ingredient	CAS	OSHA PEL	ACGIH TLV
Aluminum## | 7429-90-5 | 5 R* (Dust) | 1 R* (A4)
Beryllium | 7440-41-7 | 0.002, 0.005 CL** | 0.00005 (A1)
Chromium# | 7440-47-3 | 1 (Metal) 0.5 (Cr II & Cr III Cpnds) 0.005 (Cr VI Cpnds) | 0.5 (Metal) (A4) 0.5 (Cr III Cpnds) (A4) 0.05 (Cr VI Sol Cpnds) (A1) 0.01 (Cr VI Insol Cpnds) (A1)
Copper | 7440-50-8 | 0.1 (Fume), 1 (Dust) | 0.2 (Fume), 1 (Dust)
Iron+ | 7439-89-6 | 5 R* | 5 R* (Fe2O3) (A4)
Magnesium+ | 7439-95-4 | 5 R* | 3 R*
Manganese# | 7439-96-5 | 5 CL** (Fume) | 0.2 I* (A4) †
Nickel# | 7440-02-0 | 1 (Metal) 1 (Insol Cpnds) | 1.5 I* (Ele) (A5) 0.2 I* (Insol Cpnds) (A1)
Silicon+ | 7440-21-3 | 5 R* | 3 R*
(Amorphous Silica Fume) | 69012-64-2 | 0.8 | 3 R*

R* - Respirable Fraction, PEL – Respirable Fraction - Short Term Exposure Limit, I* - Inhalable Fraction, I** – Short Term Exposure Limit, **Ceiling Limit, *** - Limit of 0.02 mg/m³ is proposed for Respirable Mn in 2011 by ACGIH Ele – Element Sol – Soluble Insol – Insoluble Inorg – Inorganic Cpnds – Compounds – Not Otherwise Specified (A1) - Confirmed Human Carcinogen per ACGIH (A2) - Suspected

Human Carcinogen per ACGIH (A3) - Confirmed Animal Carcinogen with Unknown Relevance to Humans per ACGIH (A4) - Not Classifiable as a Human Carcinogen per ACGIH (A5) - Not Suspected as a Human Carcinogen per ACGIH (noncrystalline) form

- **Ventilation:** Use enough ventilation, local exhaust at the arc or both to keep the fumes and gases below the PEL/TLV/OELs in the worker's breathing zone and the general area. Train the welder to keep his head out of the fumes.
- **Respiratory Protection:** Use NIOSH approved or equivalent fume respirator or air supplied respirator when welding in confined space or where local exhaust or ventilation does not keep exposure below the regulatory limits.
- **Eye Protection:** Wear helmet or use face shield with filter lens. As a rule of thumb begin with Shade Number 14. Adjust if needed by selecting the next lighter and/or darker shade number. Provide protective screens and flash goggles, if necessary, to shield others from the weld arc flash.
- **PROTECTIVE CLOTHING:** Wear hand, head and body protection which help to prevent injury from radiation, sparks and electrical shock. See ANSI Z49.1. At a minimum this includes welder’s gloves and a protective face shield, and may include arm protectors, aprons, hats, shoulder protection as well as dark nondyed clothing. Train the welder not to touch live electrical parts and to insulate himself from work and ground.
- **Procedure for Cleanup of Spills or Leaks:** Not applicable
- **Special Precautions:** Maintain exposure below the PEL/TLV/OEL. Use industrial hygiene monitoring to ensure that your use of this material does not create exposures which exceed PEL/TLV/OEL. Always use exhaust ventilation. Refer to the following sources for important additional information: American National Standard (ANSI) Z49.1; Safety in Welding and Cutting published by the American Welding Society, P.O. Box 351040, Miami, FL 33135 and OSHA Publication 2206 (29 CFR 1910), U.S. Government Printing Office, Washington, DC 20402.

Section 9: Physical and Chemical Properties

Welding consumables applicable to this sheet as shipped are nonreactive, nonflammable, nonexplosive and essentially nonhazardous until welded.

- **Physical State:** Coated Electrode / Solid Wire
- **Odor:** N/A
- **Color:** Metallic
- **Form:** Stick Electrode / Round Wire
Section 10: Stability and Reactivity

GENERAL: Welding consumables applicable to this sheet are solid and nonvolatilize as shipped. This product is only intended for use per the welding parameters it was designed for. When this product is used for welding, hazardous fumes may be created. Other factors to consider include the base metal, base metal preparation and base metal coatings. All of these factors can contribute to the fume and gases generated during welding. The amount of fume varies with the welding parameters.

Stability: This product is stable under normal conditions. Reactivity: Contact with acids or strong bases may cause generation of gas.

Section 11: Toxicological Information

Short-Term (Acute) Overexposure Effects: Welding Fumes - May result in discomfort such as dizziness, nausea or dryness or irritation of nose, throat or eyes. Aluminum Oxide - Irritation of the respiratory system. Beryllium - Can cause irritant dermatitis, allergic contact dermatitis and skin granulomas. Inhalation of excessive levels of beryllium can result in acute pneumonitis (inflammation of the lung tissue). Beryllium can cause lung sensitization in susceptible individuals. Chromium - Inhalation of fume with chromium (VI) compounds can cause irritation of the respiratory tract, lung damage and asthma-like symptoms. Swallowing chromium (VI) salts can cause severe injury or death. Dust on skin can form ulcers. Eyes may be burned by chromium (VI) compounds. Allergic reactions may occur in some people. Copper - Metal fume fever characterized by metallic taste, tightness of chest and fever. Symptoms may last 24 to 48 hours following overexposure. Iron, Iron Oxide - None are known. Treat as nuisance dust or fume. Magnesium - Overexposure to the oxide may cause metal fume fever characterized by metallic taste, tightness of chest and fever. Symptoms may last 24 to 48 hours following overexposure. Nickel, Nickel Compounds - Metallic taste, nausea, tightness in chest, metal fume fever, allergic reaction. Silicon (Amorphous Silica Fume) - Dust and fumes may cause irritation of the respiratory system, skin and eyes.

Long-Term (Chronic) Overexposure Effects: Welding Fumes - Excess levels may cause bronchial asthma, lung fibrosis, pneumoconiosis or " siderosis." Aluminum Oxide - Pulmonary fibrosis and emphysema. Beryllium - Chronic inhalation of dust and fumes by these susceptible individuals can result in a serious disease called Chronic Beryllium Disease (CBD). Often misdiagnosed as sarcoidosis, CBD is an allergic condition in which the lung tissues become inflamed. This inflammation sometimes accompanied with fibrosis (lung scarring), restricts the uptake of oxygen into the blood stream. CBD can, over time, be fatal. Beryllium is listed on the NTP and is known to be carcinogenic to humans. Chromium - Ulnar deviation and perforation of nasal septum. Respiratory irritation may occur with symptoms resembling asthma. Studies have shown that chromate production workers exposed to hexavalent chromium compounds have an excess of lung cancers. Chromium (VI) compounds are more readily absorbed through the skin than chromium (III) compounds. Good practice requires the reduction of employee exposure to chromium (III) and (VI) compounds. Copper - Copper poisoning has been reported in the literature from exposure to high levels of copper. Liver damage can occur due to copper accumulating in the liver characterized by cell destruction and cirrhosis. High levels of copper may cause anemia and jaundice. High levels of copper may cause central nervous system damage characterized by nerve fiber separation and cerebral degeneration. Iron, Iron Oxide Fumes - Can cause siderosis (deposits of iron in lungs) which some researchers believe may affect pulmonary function. Lungs will clear in time when exposure to iron and its compounds ceases. Iron and magnetite (Fe3O4) are not regarded as fibrogenic materials. Magnesium - No adverse long term health effects have been reported in the literature. Manganese - Long-term overexposure to manganese compounds may affect the central nervous system. Symptoms may be similar to Parkinson's disease and can include slowing, changes in handwriting, gait impairment, muscle spasms and cramps and less commonly, tremor and behavioral changes. Employees who are overexposed to manganese compounds should be seen by a physician for early detection of neurologic problems. Overexposure to manganese and manganese compounds above safe exposure limits can cause irreversible damage to the central nervous system, including the brain, symptoms of which may include slurred speech, lethargy, tremor, muscular weakness, psychological disturbances and spastic gait. Nickel, Nickel Compounds - Lung fibrosis or pneumoconiosis. Studies of nickel refinery workers indicated a higher incidence of lung and nasal cancers. Silicon (Amorphous Silica Fume) - Research indicates that silica is present in welding fume in the amorphous form. Long term overexposure may cause pneumoconiosis. Noncrystalline forms of silica (amorphous silica) are considered to have little fibrotic potential.

Medical Conditions Aggravated by Exposure: Persons with pre-existing impaired lung functions (asthma-like conditions), Persons with a pacemaker should not go near welding and cutting operations until they have consulted their doctor and obtained information from the manufacturer of the device. Respirators are to be worn only after being medically cleared by your company-designated physician.

Emergency and First Aid Procedures: Call for medical aid. Employ first aid techniques recommended by the American Red Cross. If irritation or flash burns develop after exposure, consult a physician.

Carcinogenicity: Beryllium, chromium VI compounds and nickel compounds are classified as IARC Group 1 and NTP Group K carcinogens. Chromium VI compounds and welding fumes must be considered as carcinogens under OSHA (29 CFR 1910.1200).

California Proposition 65: WARNING: These products contain or produce a chemical known to the State of California to cause cancer and birth defects (or other reproductive harm). (California Health & Safety Code Section 25249.5 et seq.)

Section 12: Ecological Information

Welding processes can release fumes directly to the environment. Welding wire can degrade if left outside and unprotected. Residues from welding consumables and processes could degrade and accumulate in the soil and groundwater.

Section 13: Disposal Considerations

Use recycling procedures if available. Discard any product, residue, packaging, disposable container or liner in an environmentally acceptable manner, in full compliance with federal, state and local regulations.

Section 14: Transport Information

No international regulations or restrictions are applicable. No special precautions are necessary.

Section 15: Regulatory Information

Read and understand the manufacturer's instructions, your employer's safety practices and the health and safety instructions on the label and the material safety data sheet. Observe all local and federal rules and regulations. Take all necessary precautions to protect yourself and others.

United States EPA Toxic Substance Control Act: All constituents of these products are on the TSCA inventory list or are excluded from listing.

CERCLA/SARA TITLE III: Reportable Quantities (RQs) and/or Threshold Planning Quantities (TPQs):

- **Ingredient Name**
 - **RQ (Lb)**
 - **TPQ (Lb)**

Products on this SDS are a solid solution in the form of a solid article.

Spills or releases resulting in the loss of any ingredient at or above its RQ require immediate notification to the National Response Center and to your Local Emergency Planning Committee.
Section 15: Regulatory Information (Continued)

Section 311 Hazard Class

As shipped: Immediate
In Use: Immediate Delayed

EPCRA/SARA TITLE III 313 Toxic Chemicals: The following metallic components are listed as SARA 313 “Toxic Chemicals” and potentially subject to annual SARA 312 reporting: Beryllium, Chromium, Copper, Manganese and Nickel. See Section 3 for weight percentage.

Spills or releases resulting in the loss of any ingredient at or above its RQ require immediate notification to the National Response Center and to your Local Emergency Planning Committee.

Canadian WHMIS Classification: Class D; Division 2, Subdivision A

Canadian Environmental Protection Act (CEPA): All constituents of these products are on the Domestic Substance List (DSL).

Section 16: Other Information

Mercury Statement: Mercury is not a normal contaminant in aluminum alloys and neither it nor any of its compounds are used in the manufacture of this product.

Cadmium Statement: Cadmium is not a normal contaminant in aluminum alloys and neither it nor any of its compounds are used in the manufacture of this product

For additional information please refer to the following sources:

Canada: CSA Standard CAN/CSA-W117.2-01 “Safety in Welding, Cutting and Allied Processes”.

Liability-Disclaimer: American Filler Metals does not assume liability whatsoever for the accuracy or completeness of the information contained in this SDS. The information contained is accurate to the best of our knowledge. The final suitability of any material is the responsibility of the user. Materials may present unknown hazards and are intended for use by qualified individuals experienced and trained in welding safety.